
7/8/20

1

Brain network breakdown related to cognitive 
decline in ageing and neurodegenerative 

disorders

Juan (Helen) Zhou, Ph.D. 
Associate Professor

Center for Sleep and Cognition & Clinical Imaging Research Center 
Yong Loo Lin School of Medicine

&
Neuroscience and Behavioral Disorders Program

Duke-NUS Medical School
National University of Singapore (NUS)

July 8th, 2020

CARE Experts Webinar

Prevalence of dementia

Jack et al, 2013 Abbott, Nature 2011



7/8/20

2

1. Network-based neurodegeneration using network-sensitive imaging
2. Network dysfunctions in neurodegenerative and cerebrovascular diseases

– Detect symptom-specific changes in dementia subtypes
– Track longitudinal changes in pre-dementia stage: risk factors
– Reveal disease mechanism and monitor disease progression/treatment 

response

Jack et al, 2013; adni.loni.usc.edu

Alzheimer’s disease (AD)

Behavioral Variant
Frontotemporal Dementia

(bvFTD)

Semantic
Dementia (SD)

Progressive Nonfluent
Aphasia (PNFA)

Alzheimer�s disease (AD)

Corticobasal
Syndrome (CBS)

Distinct atrophy patterns in 
neurodegenerative syndromes

L

Network-based 
neurodegeneration

Image courtesy of William Seeley, UCSF
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Intrinsic connectivity networks
• fMRI: blood-oxygenation-level-dependent (BOLD) signal
• Intrinsic connectivity networks (ICNs) from task-free fMRI

– Synchronization of spontaneous low frequency signal (<0.1Hz) 

4D fMRI

=

Biswal et al., 1995; Smith et al., 2009; Yeo et al., 2011; Buckner et al., 2013

Time-series

Video courtesy of Vincent

ICN spatial maps

Syndrome-specific atrophy patterns mirror 
functional ICNs in healthy controls

Time (sec)

�Resting�

BOLD

amplitude

Single subject

Seeley, Crawford & Zhou et al., Neuron 2009



7/8/20

4

Network-based neurodegeneration

Seeley, Crawford & Zhou et al., Neuron 2009

Jack et al, 2013; Ewers et al., 2011

Network breakdown in neurodegenerative and 
cerebrovascular diseases

Detect symptom-specific changes in dementia subtypes
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Molecular, structural and functional 
characterization of Alzheimer’s disease (AD)

Alexander, J Psy. 2002; Greicius, PNAS, 2004; Buckner, J Neuro. 2005; Seeley, Neuron 2009; Zhou, Brain 2010; Zhou, Neuron 2012

Task-free fMRI: HC > mild AD
Reduced default mode network connectivity in AD

FDG-PET: HC > AD
Hypometabolism in AD

Structural MRI: HC >AD 
Default mode network atrophy in AD

PIB-PET Amyloid: AD
Increased amyloid deposition in AD

p < 0.05, height & extent corrected

BvFTD and AD: Divergent functional connectivity 
changes in the salience and default networks

Zhou et al, Brain 2010
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Salience network functional connectivity 
tracks disease severity

Zhou et al, Brain 2010

Within Salience Network

Ng and Wang et al, (under preparation)

‘Networks/modules’

Between Salience Network and Others

AD and Cerebrovascular disease (CeVD): 
Additive effects on brain networks?

• CeVD and AD are suggested to have additive effects on cognitive decline
• For same clinical severity:

– AD-only: more severe AD pathology 
– AD+CeVD: CeVD pathology + less severe AD pathology

• What are network changes in AD with and without CeVD?

Joanna Chong

Goulding et al., 1999; Zekry et al., 2002; Toledo et al., 2013

White matter hyperintensities
(WMH)

Kim et al., Biol Psychiatry (2008)

AD + CeVD
43%

AD
22%

VaD
20%

Others
15%

Lacunes
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AD and AD+CeVD: differential network 
degeneration phenotype

DMN à hippocampal volume

ECN à white matter hyperintensity

Chong et al, Brain 2017

AD: 
ê lPCC-Posterior

Joanna Chong

DMN

ECN

AD+CeVD: 
é rDLPFC-Frontal

Structural connectivity within the default 
mode network 

White matter fiber tracts linking brain regions together 

Greicius et al., Cerebral Cortex, 2009
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White matter degradation in Alzheimer’s 
disease

Jack et al., Neuron, 2013; Sachdev et al., Curr. Opin. Psychiatry, 2013

WM: white matter
GM: grey matter
CN: cognitively normal
MCI: mild cognitive impairment

Diffusion tensor imaging (DTI): 
White matter microstructure

λ1

λ3λ2

CSF

Mixed

White matter microstructure indices 
Fractional anisotropy (FA)

0 1

Demyelination and axonal damage
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Bi-tensor model 
Free-water and tissue compartments

Tissue (FAt) 
compartment
(axon bundles)

Free water (FW) 
compartment
(extracellular water)

Vascular damage
Inflammation
BBB leakage

Axonal damage 
Demyelination

FA

White matter voxel

Extracellular space
(Free-water) 

Axonal bundles
(WM tissue)

Pasternak et al, J Neurosci 2012; Ji et al, ADRT 2017 

Partial volume effect
Overestimate tissue damage

AD with cerebrovascular burden had more white 
matter tissue damage in fronto-occipito-parietal 

regions than AD without CeVD

Ji et al, ADRT 2017 

Fang JI

Tissue (FAT)
Axonal damage
Demyelination

Extracellular free water 
(FW) 
Vascular change 
inflammation

FA

Single Tensor (FA)
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High extracellular FW in normal-appearing 
WM reflects mild vascular changes in AD

Fang JI

Ji et al, ADRT 2017; Scientific Reports 2019 

Vascular change 
inflammation

WMH

Normal-
appearing 
WM

Higher free-water in normal-appearing white 
matter relates to dementia severity

WMH ratio does not

Ji et al, ADRT 2017; Scientific Reports 2019 
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Summary I

• Network-based neurodegeneration using network-sensitive imaging
– Each syndrome targets specific large-scale network
– Syndrome-specific atrophy patterns mirror healthy ICN
– A direct link between functional ICN and grey matter structure 

covariance

• Network breakdown in neurodegenerative and cerebrovascular 
diseases
– Detect symptom-specific changes in dementia subtypes

• Structural and functional network phenotype explains clinical variability

– Track longitudinal changes in pre-dementia stages

Longitudinal brain changes in preclinical and 
prodromal stage 

Influence of risk factors and pathology?

Ewers et al., 2011
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How amyloid and cerebrovascular burden 
influence network dysfunctions over time?

Doraiswamy et al, 2014; Goulding et al, 1999; Kim et al, 2008; Toledo et al, 2013; Zekry et al, 2002

Lacune White matter 
hyperintensity 

(WMH)

Vascular pathology: 
Cerebrovascular disease (CeVD)

AD pathology: 
Amyloid β

Aβ- Aβ+

Amyloid and CeVD burden had differential 
effects on longitudinal FC changes in 

prodromal dementia

Prodromal patients with 
‘pure’ amyloid burden 
showed steeper declines in 
DMN FC

Prodromal patients with 
‘pure’ cerebrovascular 
burden showed steeper 
increases in ECN FC

Joanna Chong

aMCI Aβ+ < svMCI Aβ-

svMCI Aβ- > aMCI Aβ+

CeVD burden (aMCI vs. svMCI)
�

amyloid burden (PiB)

Chong*, Jang*, et al, Neurology 2019
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Amyloid and CeVD burden had differential 
effects on longitudinal FC changes in 

prodromal dementia
Joanna Chong

Amyloid burden had an 
effect on longitudinal DMN 
FC changes

Lacune numbers had an 
effect on longitudinal ECN 
FC changes

Chong*, Jang*, et al, Neurology 2019

CeVD burden (aMCI vs. svMCI)
�

amyloid burden (PiB)

Modular organization of the brain

Functional segregation
Low between-network functional connectivity

High within-network functional connectivity
Functional specialization

Bullmore & Sporns, Nat Rev Neurosci (2012)
Meunier, Front Neuroinform (2009)Zhou et al, Neuron 2012

Modules
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Higher-order cognitive networks
Within and between network connectivity

Zhou & Seeley, Biological Psychiatry, 2014

Subcortical 
regions

Salience Network  

Executive control network Salience network Default mode network

Loss of functional segregation and 
specialization with age

ê Functional segregation
Increased between-network FC

Reduced within-network FC

ê Functional specialization

Bullmore & Sporns, Nat Rev Neurosci (2012)

Meunier, Front Neuroinform (2009)

Modules

Within-network FC

Betzel et al., Neuroimage (2014)

Between-network FC
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Worse

Longitudinal loss of functional specialization and 
segregation in cognitively normal older adults 

The effect of APOE ε4 

Ng et al. NeuroImage 2016

Inter-network segregation

Default mode Executive control

Intra-network specialization

Worse

Ng* and Qiu* et al, HBM 2018

Eric KK Ng  Yingwei Qiu

Greater loss of functional segregation relate 
to faster decline in processing speed 

Results adjusted for rate of change in grey matter volume Ng et al. NeuroImage 2016

Default mode

Executive control
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Early grey and white matter degradation 
in preclinical and prodromal dementia

Jack et al., Neuron, 2013; Sachdev et al., Curr. Opin. Psychiatry, 2013

WM: white matter
GM: grey matter
CN: cognitively normal
MCI: mild cognitive impairment

Influence of cerebrovascular and 
amyloid burden?

- A novel marker now possible to spot in human in vivo at 3T
- 43% in AD vs 24% in controls
- Associated with cognitive impairment controlled for other markers
- CMI impaired white matter tracts in animal studies

van Veluw et al, 2015, 2017; Brundel et al, 2012;  Summers et al, 2017

FLAIR: Hyper-intense T1: Hypo-intense

Cortical cerebral microinfarcts affect structural 
network topology in high-level cognitive networks in 

prodromal AD
Liwen ZHANG
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Cortical cerebral microinfarcts (CMI) affect structural 
network topology in high-level cognitive networks in 

prodromal AD
• Lower network efficiency and degree centrality in prodromal AD with CMI
• Structural network breakdown mediated CMI-cognition association

Liwen ZHANG

Efficiency

Degree

Zhang et al., JCBFM 2019

Amyloid burden accelerates white matter tissue 
degradation in right uncinate fasciculus in 

cognitively normal elderly

Vipin et al., Human Brain Mapping 2019

Ashwati VIPIN

Amyloid Negative ---
Amyloid Positive ---

RUNC
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Smaller hippocampal volume relates to 
faster memory decline 

Healthy elderly AD

Zhang L et al., Human Brain Mapping, 2020

Hippocampal subfield segmentationAmyloid burden relates to longitudinal focal-to-widespread 
hippocampal subfield degeneration in non-demented elderly

Normal Mild cognitive impairment

Zhang L et al., Human Brain Mapping, 2020
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Summary II

• Network-based neurodegeneration using network-sensitive imaging

• Network dysfunctions in neurodegenerative and cerebrovascular 
diseases
– Detect symptom-specific changes in dementia subtypes

• Structural and functional network phenotype explains clinical variability

– Track longitudinal changes in pre-dementia stages
• Specific brain network dysfunctions in preclinical and prodromal AD 
• Risk factors and pathology influence longitudinal trajectories of brain structure 

and function underlying cognitive decline

– Reveal disease mechanism; predict behavior, disease 
progression/treatment response 

Predicting disease vulnerability from the 
healthy brain functional connectome

Functional connectome in health Atrophy in disease

A
tr

op
hy

 in
 A

D

Shortest path to epicenterZhou et al, Neuron 2012

Functional network 
breakdown

Predict
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Graph metrics in healthy brain connectivity are related to 
atrophy severity in disease: Network breakdown
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Transneuron
-al spread

Trophic 
support

Nodal stress    

Trophic 
support

bvFTD pattern SD pattern CBS patternPNFA patternAD pattern

Zhou et al, 
Neuron 2012

Buckner et al, J Neurosci, 2009

Network cortical hubs have greater 
amyloid deposition

Nodal stress    
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Diffusion-based anatomical distance to 
outbreak regions modulates the amyloid 

propagation processes

Iturria-Medina et al, PLOS Computational Biology, 2014

Transneuronal
spread

Patient-tailored, connectivity-based forecasts 
of spreading brain atrophy over time 

Brown et al., Neuron 2019
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ONSET PROGRESSION

1. Unifocal
onset, 
connection-
based 
spread

2. Staggered 
multifocal 
onset, no 
connection-
based 
spread

3. Combination 
of 1 & 2

Moderate SevereMildIncipient

Onset node Mild Moderate Severe Very severe

Nodal severity

Network-based breakdown

Zhou and Seeley, Brain Circuits, 2017

Whole-brain functional network organization 

How does normal ageing influence longitudinal 
changes in brain modular functional organization?
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efficiency compared with young participants (Fig. 3 A,B; Table 4 )
as well as with time (Fig. 3 C,D; Table 5 ). No age or age ! time
interaction effects were found for both global and local efficiency
in the elderly.

Healthy elderly participants also showed reductions in
global measures of distinctiveness, with higher participation
coefficient and lower system segregation compared with
young participants (Fig. 4 A, B; Table 4 ), as well as with age and
time (Fig. 4 C,D; Table 5 ). There were no age ! time interac-
tion effects for both mean participation coefficient and system
segregation in the elderly.

Cross-sectional and longitudinal decreases in modular
measures of distinctiveness in the healthy elderly
Compared with young adults, healthy elderly participants
showed higher participation coefficient across all modules (Table
6 ). Healthy elderly also showed a greater proportion of node
types with high participation coefficient (i.e., connector hubs and
satellite connectors) and lower proportion of node types with low
participation coefficient (i.e., provincial hubs and peripheral
nodes) compared with young participants (Table 7 ). While
changes in proportion of node types were strongest for visual,
somatomotor/salience ventral attention A and default mode net-

Figure 2. The modular structure of healthy elderly becomes less distinctive with time. A, Consensus matrices map group-level modular partitions of young participants and elderly
participants at each of the three time points to eight networks defined by Yeo et al. (2011). Each module is represented by a single color. With age and time, the modular structure
becomes less distinctive, with brain regions within the same a priori subnetwork increasingly getting assigned to different modules. B, The alluvial plot represents changes in group-level
modular assignment of brain regions in healthy elderly across three time points. Each block represents a module. Each line indicates a brain region. The color of each line represents the
modular assignment of each brain region at the first time point. Among the modules, higher-order networks (e.g., default mode, control, and salience/ventral attention networks)
showed the greatest assignment changes in the healthy elderly with time. Similar observations in module fragmentation were made particularly between young and elderly participants
at baseline when repeating the analyses with equal scan lengths maintained across participants, where group differences in the modular structure between the two groups remained
significant (Figure 2-1, available at https://doi.org/10.1523/JNEUROSCI.1451-18.2019.f2-1; Figure 2-2, available at https://doi.org/10.1523/JNEUROSCI.1451-18.2019.f2-2). DM, De-
fault mode; CON, control; LIM, limbic; SVA, salience/ventral attention; DA, dorsal attention; SM, somatomotor; VIS, visual; TP, temporoparietal; DorsAttn, dorsal attention; SomMot,
somatomotor; SalVentAttn, salience/ventral attention.

5540 • J. Neurosci., July 10, 2019 • 39(28):5534 –5550 Chong et al. • Longitudinal Brain Organization Changes in Aging

Elderly showed greater age-related 
fragmentation of modular structure

Compared to young adults and with time

Chong et al., J Neuroscience 2019

Joanna Chong

Controlled for motion, scan duration, brain template

Elderly showed 
Elderly showed cross-sectional and 

longitudinal declines in network segregation 
and distinctiveness

Modules

é Participation coefficient 
ê Network distinctiveness

ê Local efficiency
ê Network segregation

Chong et al., J Neuroscience 2019

Local efficiency Participation coefficientLocal efficiency

ciency and higher mean participation coefficient across all nodes
were associated with worse attention performance, whereas
higher mean participation coefficient in the dorsal attention/con-
trol A network was associated with worse global cognitive perfor-
mance in the healthy elderly after controlling for the effects of age
(Table 10). No cross-sectional associations were found for the
other cognitive domains.

For graph theoretical measures that showed significant longi-
tudinal changes in the elderly, no associations between graph
theoretical measures and performance in any of the six cognitive
measures were found.

Influence of motion, mean connectivity strength, and choice
of methodology on findings
The above findings largely remained after accounting for the ef-
fects of motion and mean connectivity strength (Tables 4 –10).
Specifically, similar findings for both cross-sectional and longi-
tudinal analyses were obtained even after: (1) controlling for
mean relative motion and number of volumes; (2) repeating the
analyses on the subset of participants with at least 5 min of
imaging data after scrubbing; (3) repeating the analyses after
maintaining equal scan lengths across all participants; and (4)
controlling for mean connectivity.

We also obtained largely similar findings after using different
methodologies (Table 11): (1) repeating the cross-sectional anal-
yses without performing global signal regression; (2) repeating
both cross-sectional and longitudinal analyses using a different
parcellation scheme (389 nodes); and (3) repeating both analyses
using the group-level modular partition based on all young and
elderly participants at baseline.

Discussion
The present study used graph theory and community detection
methods to examine cross-sectional and longitudinal changes in
the cortical functional organization of healthy elderly. We found
age- and aging-related decreases in the global measures of net-
work integration, segregation, and distinctiveness. At the modu-
lar level, healthy elderly showed general loss of distinctiveness
and segregation in all modules compared with young partici-
pants, but more specific longitudinal declines in the segregation
of three higher-order cognitive modules: default mode network,
salience/ventral attention network, and control network. Fur-
ther, in the elderly, worse attention performance was associated

Figure 4. Healthy elderly show cross-sectional and longitudinal changes in mean participation coefficient and system segregation. A, B, Bar charts indicate mean (!2 SE) participation coefficient
and system segregation of young and elderly participants at baseline. C, D, Spaghetti plots indicate model-fitted longitudinal changes in mean participation coefficient and system segregation for
each individual. Results displayed are thresholded at p " 0.05. Healthy elderly showed higher mean participation coefficient across all nodes and lower global system segregation compared with
young participants as well as with time. *

Table 6. Cross-sectional analyses: coefficient estimates for group differences in
participation coefficient between young and elderlya

Measure Coefficient SE t Uncorr p FDR-adj p
Validation
resultsb

Visual* #0.013 2.29e #3 #5.69 8.54e #8 2.99e #7 1,2,3,4
SomMot/SalVentAttn A* #0.018 2.28e #3 #7.84 1.69e #12 1.18e #11 1,2,3,4
DorsAttn/Control A* #4.58e #3 1.21e #3 #3.77 2.50e #4 4.38e #4 1,2,3,4
SalVentAttn* #5.04e #3 1.54e #3 #3.27 1.39e #3 1.46e #3 2,3,4
Default* #0.013 2.29e #3 #5.50 2.06e #7 4.81e #7 1,2,3,4
Control* #4.32e #3 1.33e #3 #3.25 1.46e #3 1.46e #3 1,2,3,4
Control C/Default C* #5.98e #3 1.82e #3 #3.28 1.33e #3 1.46e #3 2,3,4
aUncorr, Uncorrected; FDR-adj, false discovery rate-adjusted; DorsAttn, dorsal attention; SomMot, somatomotor;
SalVentAttn, salience/ventral attention.
bValidation results: 1, effect remains significant (FDR-adjusted p " 0.05) after controlling for mean relative motion
and number of volumes; 2, effect remains significant (FDR-adjusted p " 0.05) after repeating the analyses in a
subset of participants (young: n $ 54; elderly: n $ 68) with at least 150 volumes of good-quality imaging data
(i.e., !5 min in length) remaining after scrubbing; 3, effect remains significant (FDR-adjusted p " 0.05) after
maintaining equal scan lengths (123 volumes) across all participants; 4, effect remains significant (FDR-adjusted
p " 0.05) after controlling for mean functional connectivity strength across all edges.

*Statistically significant effects (FDR-adjusted p " 0.05).

Chong et al. • Longitudinal Brain Organization Changes in Ageing J. Neurosci., Month XX, 2019 • 39(xx):XXX–XXX • 9
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Local efficiency

works, similar trends were also observed for the rest of the mod-
ules. Collectively, these findings indicate a general increase in
internetwork connectivity and consequently a decrease in segre-
gation across all modules in healthy elderly compared with their
younger counterparts.

While the cross-sectional group analyses showed nonspecific
age-related decreases in segregation across all modules, longitu-
dinal analyses instead revealed more focal network changes. Spe-
cifically, healthy elderly showed increases in the participation
coefficient of three higher-order cognitive modules with time
and/or with age: the salience/ventral attention network, the de-
fault mode network, and the control network (Fig. 5 ; Table 8). No
age ! time interaction effects were found. Consistent with our
findings of increased participation coefficient in the default
mode, salience/ventral attention, and control networks, we also

found longitudinal increases in the proportion of node types with
high participation coefficient in these three modules. Corre-
spondingly, these modules showed longitudinal decreases in
the proportion of node types with low participation coeffi-
cient (Table 9 ).

Association between cross-sectional and longitudinal changes
in graph theoretical measures and cognition of healthy elderly
Among the graph theoretical measures that showed significant
group differences between young and elderly, lower local effi-

Figure 3. Healthy elderly show cross-sectional and longitudinal reductions in local and global efficiency. A, B, Bar charts indicate mean ("2 SE) global efficiency and local efficiency of young and
elderly participants at baseline. C, D, Spaghetti plots indicate model-fitted longitudinal changes in global and local efficiency for each individual. Results displayed are thresholded at p # 0.05.
Healthy elderly showed lower local and global efficiency at the whole-brain level compared with young participants and with time. *

Table 4. Cross-sectional analyses: coefficient estimates for group differences in
global measures of integration, segregation, and distinctiveness between young
and elderly

Measure Coefficient SE t p
Validation
resultsa

Global efficiency 9.10e $4 4.38e $4 2.08 0.040* 2,3,4
Local efficiency 3.47e $3 1.06e $3 3.29 1.29e $3* 1,2,3,4
Mean participation

coefficient
$0.010 1.21e $3 $8.31 1.32e $13* 1,2,3,4

System segregation 9.94e $3 1.28e $3 7.79 2.14e $12* 1,2,3,4
aValidation results: 1, effect remains significant ( p # 0.05) after controlling for mean relative motion and number
of volumes; 2, effect remains significant ( p # 0.05) after repeating the analyses in a subset of participants (young:
n % 54; elderly: n % 68) with at least 150 volumes of good-quality imaging data (i.e., !5 min in length) remain-
ing after scrubbing; 3, effect remains significant ( p # 0.05) after maintaining equal scan lengths (123 volumes)
across all participants; 4, effect remains significant ( p # 0.05) after controlling for mean functional connectivity
strength across all edges.

*Statistically significant effect ( p # 0.05).

Table 5. Longitudinal analyses: coefficient estimates for time, age, and age !
time effects on global measures of integration, segregation, and distinctiveness in
elderly

Measure Predictor Coefficient SE t p
Validation
resultsa

Global efficiency Time* $2.76e $4 1.21e $4 $2.28 0.023 2,4
Age 3.57e $5 5.18e $5 0.69 0.490
Age ! time 1.32e $6 2.26e $5 0.06 0.954

Local efficiency

Time* $7.73e $4 2.97e $4 $2.60 9.27e $3 1,2,4
Age $8.03e $5 1.26e $4 $0.64 0.524
Age ! time 1.76e $5 5.57e $5 0.32 0.752

Mean participation
coefficient

Time* 9.55e $4 2.59e $4 3.69 2.24e $4 1,2,3,4
Age* 3.61e $4 1.20e $4 2.99 2.76e $3 1,2,3,4
Age ! time $1.76e $5 4.89e $5 $0.36 0.719

System segregation Time* $9.59e $4 2.68e $4 $3.58 3.40e $4 1,2,3,4
Age* $2.76e $4 1.16e $4 $2.37 0.018 1,3,4
Age ! time 3.63e $6 5.06e $5 0.07 0.943

aValidation results: 1, effect remains significant ( p # 0.05) after controlling for mean relative motion and number
of volumes; 2, effect remains significant ( p # 0.05) after repeating the analyses in a subset of participants (n % 68)
with at least 150 volumes of good-quality imaging data (i.e., !5 min in length) remaining after scrubbing; 3, effect
remains significant ( p # 0.05) after maintaining equal scan lengths (123 volumes) across all participants; 4, effect
remains significant ( p # 0.05) after controlling for mean functional connectivity strength across all edges.

*Statistically significant effects ( p # 0.05).
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Psychosis prodrome – predicting conversion 

(Stahl’s essential Psychopharmacology)

At-risk mental state for psychosis 
(ARMS) 

Fusar-Poli  et al. Arch Gen Psychiatry 2012

Variable outcomes in ARMS

pared with 32.8% (29.5%-36.2%) in studies in which pa-
tients received nonspecific psychiatric care (case
management), termed care as usual (psychologic treat-
ment vs care as usual, Q=11.69; P=.001). The transi-
tion risk in studies in which HR patients had been
offered antipsychotics was 22.9% (95% CI, 20.5%-
25.5%), whereas the risk in studies in which patients were
not exposed to antipsychotics was 36.5% (32.1%-
41.3%) (exposed vs nonexposed, Q=28.32; P! .001).

TESTS FOR PUBLICATION BIAS

Visual inspection of funnel plots revealed no obvious evi-
dence of publication bias, and quantitative evaluation of
publication bias, as measured by the Egger intercept, was
nonsignificant (P=.70). The Orwin fail-safe procedure
estimated that 171 unpublished studies would be needed

to make the overall meta-analytic estimate of transition
risk nonsignificantly different from the base risk.52

SENSITIVITY ANALYSES

No study affected the meta-analytic estimate by more than
5%. Because of their large sample sizes, the multicenter
studies (North American Prodrome Longitudinal Study,60

377 HR patients included; and European Prediction of
Psychosis Study,47 245 HR patients included) were given
the highest relative weights on the overall meta-
analytical estimates (Table). Removing studies with qual-
ity ratings in the lowest 30% decreased the meta-
analytic estimate of transition risk by only 7%. The pattern
of differences across the subanalyses remained essen-
tially unchanged in direction and magnitude.

TESTS FOR HETEROGENEITY

According to the criteria set by Higgins and Thompson,74

the heterogeneity in published risks of transition to psy-
chosis was statistically significant and large in magnitude
(Q=204.48; P! .001; I2=83.11). Because the overall in-
terstudy variance in effect sizes was substantial, it encour-
aged consideration of possible explanatory factors.

COMMENT

To our knowledge, this is the first comprehensive meta-
analysis of transition risks to psychosis in patients at HR
for psychosis. It provides an update of the HR literature
since the 2006 systematic review by Olsen and Rosen-
baum.32 This review concluded by noting the need for fur-
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Figure 3. Kaplan-Meier estimates of transition risks (6 studies) in the clinical
high risk (HR) state for psychosis. The proportion of HR subjects who
developed a frank psychotic episode is depicted on the y axis. Follow-up time
is depicted on the x axis.
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Figure 4. Meta-regression on the effects of age of subjects at clinical high
risk (HR) and publication year on transition risks to psychosis. Circle size
reflects the weight a study obtained in the meta-regression. Excluding the
outlier on the right (panel A) and the 2 outliers on the left (panel B) did not
reverse statistical significance (age: "=0.07, 95% CI, 0.05 to 0.09, P! .001;
Q=27.94, P! .001; publication year: "=−0.15, 95% CI, −0.17 to −0.11,
P! .001; Q=85.18, P! .001).
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Salience network structural and functional 
dysconnectivity in ARMS

Wang et al. Psychol Med 2016
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Functional and structural dysconnectivity 
predicted psychotic conversion in ARMS 

Wang et al. Psychol Med 2016; 
Wang et al., Cerebral Cortex 2017Chenhao WANG, MD, PhD

The Alzheimer’s Disease Prediction Of 
Longitudinal Evolution (TADPOLE) 

Challenge: Results after 1 Year Follow-up
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Summary III

• Network-based neurodegeneration using network-sensitive imaging

• Network dysfunctions in neurodegenerative and cerebrovascular 
diseases
– Detect symptom-specific changes in dementia subtypes
– Track longitudinal changes in pre-dementia stages
– Reveal disease mechanism, monitor treatment response, and 

predict disease progression 

Future directions

Neuroimaging, Genetic, 
Blood, CSF, digital…

Computation and statistics
Machine learning

Clinical outcomes, 
Intervention/Pathology

Aim for individualized early detection, prognosis, and proactive intervention 

Interpretability, reliability, and reproducibility

Big data, multimodal, and multivariate approaches
Advancing image acquisition and processing
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