

NUS National University of Singapore

Molecular, structural and functional characterization of Alzheimer's disease (AD)

(extracellular water)

Pasternak et al, J Neurosci 2012; Ji et al, ADRT 2017

White matter voxel

Amyloid and CeVD burden had differential effects on longitudinal FC changes in prodromal dementia

Loss of functional segregation and specialization with age

Greater loss of functional segregation relate to faster decline in processing speed

Amyloid burden relates to longitudinal focal-to-widespread hippocampal subfield degeneration in non-demented elderly Normal Mild cognitive impairment ADNI-CA1 ADNI-ML ADNI-S ADNI-CA 620 560 ile cell laver (dentate gyrus) 380 600 (mm³) 540 600 Volume (mm³) 580 360 520 580 Volume 560 500 340 560 540 480 540 320 0 25 50 0 25 50 0 25 50 0 25 50 Time (mo onth' Time (month MACC-CA MACC-CA1 MACC-ML MACC-Subio 620 560 380 600 mm3 6**0**0 540 (cu 580 360 580 520 Volume Volume 560 560 500 340 540 480 540 320 25 0 25 25 ī 2 Ő Time (month) Time (Upper tercile of Af of Aß of Aß Zhang L et al., Human Brain Mapping, 2020

Functional and structural dysconnectivity predicted psychotic conversion in ARMS

The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up

	Overall		Diagnosis	ADAS-Cog13				Ventricles (% ICV)				
Submission	Rank	Rank	MAUC	BCA	Rank	MAE	WES	CPA	Rank	MAE	WES	CPA
ConsensusMedian	-	-	0.925	0.857	-	5.12	5.01	0.28	-	0.38	0.33	0.09
Frog	1	1	0.931	0.849	4	4.85	4.74	0.44	10	0.45	0.33	0.47
ConsensusMean	-	-	0.920	0.835	-	3.75	3.54	0.00	-	0.48	0.45	0.13
EMC1-Std	2	8	0.898	0.811	23-24	6.05	5.40	0.45	1-2	0.41	0.29	0.43
VikingAI-Sigmoid	3	16	0.875	0.760	7	5.20	5.11	0.02	11-12	0.45	0.35	0.20
EMC1-Custom	4	11	0.892	0.798	23-24	6.05	5.40	0.45	1-2	0.41	0.29	0.43
CBIL	5	9	0.897	0.803	15	5.66	5.65	0.37	13	0.46	0.46	0.09
Apocalypse	6	7	0.902	0.827	14	5.57	5.57	0.50	20	0.52	0.52	0.50
GlassFrog-Average	7	4-6	0.902	0.825	8	5.26	5.27	0.26	29	0.68	0.60	0.33
GlassFrog-SM	8	4-6	0.902	0.825	17	5.77	5.92	0.20	21	0.52	0.33	0.20
BORREGOTECMTY	9	19	0.866	0.808	20	5.90	5.82	0.39	5	0.43	0.37	0.40
BenchmarkMixedEffects	-	-	0.846	0.706	-	4.19	4.19	0.31	-	0.56	0.56	0.50
EMC-EB	10	3	0.907	0.805	39	6.75	6.66	0.50	9	0.45	0.40	0.48
lmaUCL-Covariates	11-12	22	0.852	0.760	27	6.28	6.29	0.28	3	0.42	0.41	0.11
CN2L-Average	11-12	27	0.843	0.792	9	5.31	5.31	0.35	16	0.49	0.49	0.33
VikingAI-Logistic	13	20	0.865	0.754	21	6.02	5.91	0.26	11-12	0.45	0.35	0.20

<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

www.neuroimaginglab.org Email: helen.zhou@nus.edu.s

References

- Twitter: @HelenJuanZhou @MNNDL Lab
- arget large-scale human brain networks. Neuron. 2009; 62(1): 42-52. t frontotemporal dementia and Alzheimer's disease. Brain. 2010; 133(5): J, Miller BL, Greicius MD. Neu gent network connectivity char legenerative diseases s in behavioural variar Seeley WW, Crawford RK, Zhou J, et al., Seeley WW.
- et al., S I., Seeley WW. Predicting Regional Neurodege ley WW. Network Dysfunction in Alzheimer's D on from the Healthy Brain Fund and Frontotemporal Dementia nal Connectome. Neuron. 2012; 73(6): 1216-27. mplications for Psychiatry. Biological Psychiatry. 2014; 75(7):
- o. C, et al., Zh re in persons at risk for psychosis: findings from the ctivity and white
- ..., <u>Zhou J.</u> Disrupted salience network functional connectivity and *p* Psychological Medicine. 2016; 48(13):2771-2783. Zhou J. Reduced functional segregation between the default m mage. 2016; 133:321-330. Zhou J.², Chee MML*. Spontaneous eyelid closures link vigilan Science. 2016; 113(24):9653-9658. rol network in healthy older adults: a longit
- ectivity states. Pro dinas of the Na
- X, et al. Influence of cerebrovascular dise se on brain ne se. Brain. 2017:140(11):3012-3022 works in prodre . Zhou J
- Editor's choice) Ji F, et al., Zhou J. Distinct white matter microstructural abnormalities nt in AD with and without
- ostructural abnormances and a rch and Therapy 2017; 17:9-63. segregation loss over time is mo the matter microstruct theimer's Research and <u>u J</u>. Functional segrega floid burden accelerates ovascular disease. Alzł *, Qiu YW*, et al., <u>Zhou</u> A, et al., <u>Zhou JH</u>, Amylo JSX, et al., <u>Zhou JH</u>. L ated by APOE ge •
- on in cogni
- by APOE genotype in healthy elderly. Human Brain Mapping 2018. ititvely normal elderly individuals. Human Brain Mapping, 2019. ganization of healthy elderly. Journal of Neuroscience 2019; 1451-18. n divergently influence brain functional network changes over time. Vipin A, et al., <u>Zhou</u> Chong JSX, et al., Chong JSX*, Jang lar burd
- art, Jan Jang L, et al., Zi Metabolism 2019. Zhang L, et al., Zi Mang L, et al., Zh (020; 1-11. Chapters rcts affect brain structural network topology in cognitively impaired patients. Journal of Cerebral Blood Flow and JH. Cerebral microinfa
- JH*, Chen CLH*. Longitudinal trajectory of Amyloid-related hippocampal subfield atrophy in nondemented elderly. Human Brain Mapping,
- vorsist. vu J; Seeley WW, 2017, Brain circuits: Neuro versity Press; New York; USA, N.A., 98-122 u J; Ng KK; Liu S, 2019, Brain network funct ics and Clinical Application of the second B napters: ou J; Se egenerative dise s. Pillai JA and Cummings JL, in N ases: Unifying principles, Oxford ntia. Stephan Ulmer and Olav Jansen, in fMRI
- lberg (In pre ion), Springer, B

